Definition
Let X and Y be two topological spaces, and let C(X,Y) denote the set of all continuous maps between X and Y. Given a compact subset K of X and an open subset U of Y, let V(K,U) denote the set of all functions ƒ ∈ C(X,Y) such that ƒ(K) ⊂ U. Then the collection of all such V(K,U) is a subbase for the compact-open topology on C(X,Y). (This collection does not always form a base for a topology on C(X,Y).)
When working in the category of compactly-generated spaces, it is common to modify this definition by restricting to the subbase formed from those K which are the image of a compact Hausdorff space. Of course, if X is compactly generated and Hausdorff, this definition coincides with the previous one. However, the modified definition is crucial if one wants the convenient category of compactly-generated weak Hausdorff spaces to be Cartesian closed, among other useful properties. The confusion between this definition and the one above is caused by differing usage of the word compact.
Read more about this topic: Compact-open Topology
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)