Commutation Theorem - Commutation Theorem For Semifinite Traces

Commutation Theorem For Semifinite Traces

Let M be a von Neumann algebra and M+ the set of positive operators in M. By definition, a semifinite trace (or sometimes just trace) on M is a functional τ from M+ into such that

  1. for a, b in M+ and λ, μ ≥ 0 (semilinearity);
  2. for a in M+ and u a unitary operator in M (unitary invariance);
  3. τ is completely additive on orthogonal families of projections in M (normality);
  4. each projection in M is as orthogonal direct sum of projections with finite trace (semifiniteness).

If in addition τ is non-zero on every non-zero projection, then τ is called a faithful trace.

If τ is a faithul trace on M, let H = L2(M, τ) be the Hilbert space completion of the inner product space

with respect to the inner product

The von Neumann algebra M acts by left multiplication on H and can be identified with its image. Let

for a in M0. The operator J is again called the modular conjugation operator and extends to a conjugate-linear isometry of H satisfying J2 = I. The commutation theorem of Murray and von Neumann

is again valid in this case. This result can be proved directly by a variety of methods, but follows immediately from the result for finite traces, by repeated use of the following elementary fact:

If M1 M2 are two von Neumann algebras such that pn M1 = pn M2 for a family of projections pn in the commutant of M1 increasing to I in the strong operator topology, then M1 = M2.

Read more about this topic:  Commutation Theorem

Famous quotes containing the words theorem and/or traces:

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    Einstein is not ... merely an artist in his moments of leisure and play, as a great statesman may play golf or a great soldier grow orchids. He retains the same attitude in the whole of his work. He traces science to its roots in emotion, which is exactly where art is also rooted.
    Havelock Ellis (1859–1939)