Commitment Ordering - Overview

Overview

The Commitment ordering (CO; Raz 1990, 1992, 1994, 2009) schedule property has been referred to also as Dynamic atomicity (since 1988), commit ordering, commit order serializability, and strong recoverability (since 1991). The latter is a misleading name since CO is incomparable with recoverability, and the term "strong" implies a special case. This means that a schedule with a strong recoverability property does not necessarily have the CO property, and vice versa.

In 2009 CO has been characterized as a major concurrency control method, together with the previously known (since the 1980s) three major methods: Locking, Time-stamp ordering, and Serialization graph testing, and as an enabler for the interoperability of systems using different concurrency control mechanisms.

In a federated database system or any other more loosely defined multidatabase system, which are typically distributed in a communication network, transactions span multiple and possibly Distributed databases. Enforcing global serializability in such system is problematic. Even if every local schedule of a single database is serializable, still, the global schedule of a whole system is not necessarily serializable. The massive communication exchanges of conflict information needed between databases to reach conflict serializability would lead to unacceptable performance, primarily due to computer and communication latency. The problem of achieving global serializability effectively had been characterized as open until the public disclosure of CO in 1991 by its inventor Yoav Raz (Raz 1991a; see also Global serializability).

Enforcing CO is an effective way to enforce conflict serializability globally in a distributed system, since enforcing CO locally in each database (or other transactional object) also enforces it globally. Each database may use any, possibly different, type of concurrency control mechanism. With a local mechanism that already provides conflict serializability, enforcing CO locally does not cause any additional aborts, since enforcing CO locally does not affect the data access scheduling strategy of the mechanism (this scheduling determines the serializability related aborts; such a mechanism typically does not consider the commitment events or their order). The CO solution requires no communication overhead, since it uses (unmodified) atomic commitment protocol messages only, already needed by each distributed transaction to reach atomicity. An atomic commitment protocol plays a central role in the distributed CO algorithm, which enforces CO globally, by breaking global cycles (cycles that span two or more databases) in the global conflict graph. CO, its special cases, and its generalizations are interoperable, and achieve global serializability while transparently being utilized together in a single heterogeneous distributed environment comprising objects with possibly different concurrency control mechanisms. As such, Commitment ordering, including its special cases, and together with its generalizations (see CO variants below), provides a general, high performance, fully distributed solution (no central processing component or central data structure are needed) for guaranteeing global serializability in heterogeneous environments of multidatabase systems and other multiple transactional objects (objects with states accessed and modified only by transactions; e.g., in the framework of transactional processes, and within Cloud computing and Grid computing). The CO solution scales up with network size and the number of databases without any negative impact on performance (assuming the statistics of a single distributed transaction, e.g., the average number of databases involved with a single transaction, are unchanged).

With the proliferation of Multi-core processors, Optimistic CO (OCO) has been also increasingly utilized to achieve serializability in software transactional memory, and numerous STM articles and patents utilizing "commit order" have already been published (e.g., Zhang et al. 2006).

Read more about this topic:  Commitment Ordering