Combinatorial Species

In combinatorial mathematics, the theory of combinatorial species is an abstract, systematic method for analysing discrete structures in terms of generating functions. Examples of discrete structures are (finite) graphs, permutations, trees, and so on; each of these has an associated generating function which counts how many structures there are of a certain size. One goal of species theory is to be able to analyse complicated structures by describing them in terms of transformations and combinations of simpler structures. These operations correspond to equivalent manipulations of generating functions, so producing such functions for complicated structures is much easier than with other methods. The theory was introduced by André Joyal.

The power of the theory comes from its level of abstraction. The "description format" of a structure (such as adjacency list versus adjacency matrix for graphs) is irrelevant, because species are purely algebraic. Category theory provides a useful language for the concepts that arise here, but it is not necessary to understand categories before being able to work with species.

Read more about Combinatorial Species:  Definition of Species, Calculus of Species, Types and Unlabelled Structures, Class of All Species, Generalizations, Software

Famous quotes containing the word species:

    “If Steam has done nothing else, it has at least added a whole new Species to English Literature ... the booklets—the little thrilling romances, where the Murder comes at page fifteen, and the Wedding at page forty—surely they are due to Steam?”
    “And when we travel by electricity—if I may venture to develop your theory—we shall have leaflets instead of booklets, and the Murder and the Wedding will come on the same page.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)