Collatz Conjecture - Statement of The Problem

Statement of The Problem

Consider the following operation on an arbitrary positive integer:

  • If the number is even, divide it by two.
  • If the number is odd, triple it and add one.

In modular arithmetic notation, define the function f as follows:

Now, form a sequence by performing this operation repeatedly, beginning with any positive integer, and taking the result at each step as the input at the next.

In notation:

(that is: is the value of applied to recursively times; )

or


{a_{i}} = \frac{1}{2}{a_{i-1}} - \frac{1}{4}(5a_{i-1}+2)((-1)^{a_{i-1}}-1)

(which yields for even and for odd ).

The Collatz conjecture is: This process will eventually reach the number 1, regardless of which positive integer is chosen initially.

That smallest i such that ai = 1 is called the total stopping time of n. The conjecture asserts that every n has a well-defined total stopping time. If, for some n, such an i doesn't exist, we say that n has infinite total stopping time and the conjecture is false.

If the conjecture is false, it can only be because there is some starting number which gives rise to a sequence which does not contain 1. Such a sequence might enter a repeating cycle that excludes 1, or increase without bound. No such sequence has been found.

Read more about this topic:  Collatz Conjecture

Famous quotes containing the words the problem, statement of, statement and/or problem:

    In a town-meeting, the great secret of political science was uncovered, and the problem solved, how to give every individual his fair weight in the government, without any disorder from numbers. In a town-meeting, the roots of society were reached. Here the rich gave counsel, but the poor also; and moreover, the just and the unjust.
    Ralph Waldo Emerson (1803–1882)

    One is apt to be discouraged by the frequency with which Mr. Hardy has persuaded himself that a macabre subject is a poem in itself; that, if there be enough of death and the tomb in one’s theme, it needs no translation into art, the bold statement of it being sufficient.
    Rebecca West (1892–1983)

    The parent is the strongest statement that the child hears regarding what it means to be alive and real. More than what we say or do, the way we are expresses what we think it means to be alive. So the articulate parent is less a telling than a listening individual.
    Polly Berrien Berends (20th century)

    The thinking person has the strange characteristic to like to create a fantasy in the place of the unsolved problem, a fantasy that stays with the person even when the problem has been solved and truth made its appearance.
    Johann Wolfgang Von Goethe (1749–1832)