Collatz Conjecture - Methods of Proof

Methods of Proof

There have been many methods of attack on the problem. For example, let A and B be integers, A being how many times the "3n+1" rule is used in a cycle, and B being how many times the "n/2" rule is used. Let x be the lowest number in a cycle then, regardless of what order the rules are used, we have:


\frac{3^A}{2^B}x + C = x

where C is the "excess" caused by the "+1" in the rule, and can be shown to be bigger than:


C \ge \frac{3^{A-1}}{2^B}

using geometric progression. Rearranging shows that the lowest number in the cycle satisfies:


x \ge \frac{3^{A-1}}{2^B-3^A}

which gives a lower bound for the lowest number in a cycle for a given cycle length. For large cycles the fraction 3A/2B would be expected to tend to 1, so that the lower bound would be large.

Read more about this topic:  Collatz Conjecture

Famous quotes containing the words methods of, methods and/or proof:

    Methods of thought which claim to give the lead to our world in the name of revolution have become, in reality, ideologies of consent and not of rebellion.
    Albert Camus (1913–1960)

    I think it is a wise course for laborers to unite to defend their interests.... I think the employer who declines to deal with organized labor and to recognize it as a proper element in the settlement of wage controversies is behind the times.... Of course, when organized labor permits itself to sympathize with violent methods or undue duress, it is not entitled to our sympathy.
    William Howard Taft (1857–1930)

    O, popular applause! what heart of man
    Is proof against thy sweet, seducing charms?
    William Cowper (1731–1800)