Collatz Conjecture - Methods of Proof

Methods of Proof

There have been many methods of attack on the problem. For example, let A and B be integers, A being how many times the "3n+1" rule is used in a cycle, and B being how many times the "n/2" rule is used. Let x be the lowest number in a cycle then, regardless of what order the rules are used, we have:


\frac{3^A}{2^B}x + C = x

where C is the "excess" caused by the "+1" in the rule, and can be shown to be bigger than:


C \ge \frac{3^{A-1}}{2^B}

using geometric progression. Rearranging shows that the lowest number in the cycle satisfies:


x \ge \frac{3^{A-1}}{2^B-3^A}

which gives a lower bound for the lowest number in a cycle for a given cycle length. For large cycles the fraction 3A/2B would be expected to tend to 1, so that the lower bound would be large.

Read more about this topic:  Collatz Conjecture

Famous quotes containing the words methods and/or proof:

    All good conversation, manners, and action, come from a spontaneity which forgets usages, and makes the moment great. Nature hates calculators; her methods are saltatory and impulsive.
    Ralph Waldo Emerson (1803–1882)

    O, popular applause! what heart of man
    Is proof against thy sweet, seducing charms?
    William Cowper (1731–1800)