Collatz Conjecture - Methods of Proof

Methods of Proof

There have been many methods of attack on the problem. For example, let A and B be integers, A being how many times the "3n+1" rule is used in a cycle, and B being how many times the "n/2" rule is used. Let x be the lowest number in a cycle then, regardless of what order the rules are used, we have:


\frac{3^A}{2^B}x + C = x

where C is the "excess" caused by the "+1" in the rule, and can be shown to be bigger than:


C \ge \frac{3^{A-1}}{2^B}

using geometric progression. Rearranging shows that the lowest number in the cycle satisfies:


x \ge \frac{3^{A-1}}{2^B-3^A}

which gives a lower bound for the lowest number in a cycle for a given cycle length. For large cycles the fraction 3A/2B would be expected to tend to 1, so that the lower bound would be large.

Read more about this topic:  Collatz Conjecture

Famous quotes containing the words methods of, methods and/or proof:

    If men got pregnant, there would be safe, reliable methods of birth control. They’d be inexpensive, too.
    Anna Quindlen (b. 1952)

    I believe in women; and in their right to their own best possibilities in every department of life. I believe that the methods of dress practiced among women are a marked hindrance to the realization of these possibilities, and should be scorned or persuaded out of society.
    Elizabeth Stuart Phelps (1844–1911)

    The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.
    Charles Baudelaire (1821–1867)