Coherent Diffraction Imaging

Coherent diffractive imaging (CDI) also coherent diffraction imaging is a “lensless” technique for 2D or 3D reconstruction of the image of nanoscale structures such as nanotubes, nanocrystals, defects, potentially proteins, and more. In CDI, a highly coherent beam of x-rays, electrons or other wavelike particle or photon is incident on an object. The beam scattered by the object produces a diffraction pattern downstream which is then collected by a detector. This recorded pattern is then used to reconstruct an image via an iterative feedback algorithm. Effectively, the objective lens in a typical microscope is replaced with software to convert from the reciprocal space diffraction pattern into a real space image. The advantage in using no lenses is that the final image is aberration–free and so resolution is only diffraction and dose limited (dependent on wavelength, aperture size and exposure). A simple Fourier transform retrieves only the intensity information and so is insufficient for creating an image from the diffraction pattern due to the phase problem.

Read more about Coherent Diffraction Imaging:  The Phase Problem, Reconstruction, Coherence, Diffraction Imaging Techniques

Famous quotes containing the word coherent:

    We have good reason to believe that memories of early childhood do not persist in consciousness because of the absence or fragmentary character of language covering this period. Words serve as fixatives for mental images. . . . Even at the end of the second year of life when word tags exist for a number of objects in the child’s life, these words are discrete and do not yet bind together the parts of an experience or organize them in a way that can produce a coherent memory.
    Selma H. Fraiberg (20th century)