Cluster (spacecraft) - Launch Failure

Launch Failure

The Ariane 5 reused the inertial reference platform from the Ariane 4, but the Ariane 5's flight path differed considerably from the previous models. Specifically, the Ariane 5's greater horizontal acceleration caused the computers in both the back-up and primary platforms to crash and emit diagnostic data misinterpreted by the autopilot as spurious position and velocity data. Pre-flight tests had never been performed on the inertial platform under simulated Ariane 5 flight conditions so the error was not discovered before launch. During the investigation, a simulated Ariane 5 flight was conducted on another inertial platform. It failed in exactly the same way as the actual flight units.

The greater horizontal acceleration caused a data conversion from a 64-bit floating point number to a 16-bit signed integer value to overflow and cause a hardware exception. Efficiency considerations had omitted range checks for this particular variable, though conversions of other variables in the code were protected. The exception halted the reference platforms, resulting in the destruction of the flight.

Although the report identified a software bug as the direct cause, other investigators see the causes as system design failures and management issues:

h) On the basis of those calculations the main computer commanded the booster nozzles, and somewhat later the main engine nozzle also, to make a large correction for an attitude deviation that had not occurred.
i) A rapid change of altitude occurred, which caused the launcher to disintegrate at 39 seconds after H0 due to aerodynamic forces.
m) Ariane 5's inertial reference system is essentially the same as a system presently flying on Ariane 4. The part of the software that caused the interruption in the inertial system computers is used before launch to align the inertial reference system and, in Ariane 4, also to enable a rapid realignment of the system in case of a late hold in the countdown. This realignment function, which does not serve any purpose on Ariane 5, was nevertheless retained for commonality reasons and allowed, as in Ariane 4, to operate for approx. 40 seconds after lift-off.
n) During design of the software of the inertial reference system used for Ariane 4 and Ariane 5, a decision was taken that it was not necessary to protect the inertial system computer from being made inoperative by an excessive value of the variable related to the horizontal velocity, a protection provided for several other variables of the alignment software. When taking this design decision, it was not analysed or fully understood which values this particular variable might assume when the alignment software was allowed to operate after lift-off.
o) In Ariane 4 flights using the same type of inertial reference system there has been no such failure because the trajectory during the first 40 seconds of flight is such that the particular variable related to horizontal velocity cannot reach, with an adequate operational margin, a value beyond the limit present in the software.
p) Ariane 5 has a high initial acceleration and a trajectory, which leads to a build-up of horizontal velocity five times more rapid than for Ariane 4. The higher horizontal velocity of Ariane 5 generated, within the 40-second timeframe, the excessive value that caused the inertial system computers to cease operation.
q) The purpose of the review process, which involves all major partners in the Ariane 5 programme, is to validate design decisions and to obtain flight qualification. In this process, the limitations of the alignment software were not fully analysed and the possible implications of allowing it to continue to function during flight were not realised.
r) The specification of the inertial reference system and the tests performed at equipment level did not specifically include the Ariane 5 trajectory data. Consequently the realignment function was not tested under simulated Ariane 5 flight conditions, and the design error was not discovered.
s) It would have been technically feasible to include almost the entire inertial reference system in the overall system simulations which were performed. For a number of reasons it was decided to use the simulated output of the inertial reference system, not the system itself or its detailed simulation. Had the system been included, the failure could have been detected.
t) Post-flight simulations have been carried out on a computer with software of the inertial reference system and with a simulated environment, including the actual trajectory data from the Ariane 501 flight. These simulations have faithfully reproduced the chain of events leading to the failure of the inertial reference systems

Read more about this topic:  Cluster (spacecraft)

Famous quotes containing the words launch and/or failure:

    Now launch the small ship, now as the body dies
    and life departs, launch out, the fragile soul
    in the fragile ship of courage, the ark of faith
    with its store of food and little cooking pans
    and change of clothes,
    —D.H. (David Herbert)

    Every failure teaches a man something, to wit, that he will probably fail again next time.
    —H.L. (Henry Lewis)