Cloud Chamber - Other Particle-detection

Other Particle-detection

The diffusion cloud chamber was developed in 1939 by Alexander Langsdorf. This chamber differs from the expansion cloud chamber in that it is continuously sensitized to radiation, and in that the bottom must be cooled to a rather low temperature, generally as cold as or colder than dry ice. Alcohol vapor is also often used due to its different phase transition temperatures. Dry-ice-cooled cloud chambers are a common demonstration and hobbyist device; the most common fluid used in them is isopropyl alcohol, though methyl alcohol can be encountered as well. There are also water-cooled diffusion cloud chambers, using ethylene glycol.

The bubble chamber was invented by Donald A. Glaser of the United States in 1952, and for this, he was awarded the Nobel Prize in Physics in 1960. The bubble chamber similarly reveals the tracks of subatomic particles, but as trails of bubbles in a superheated liquid, usually liquid hydrogen. Bubble chambers can be made physically larger than cloud chambers, and since they are filled with much-denser liquid material, they reveal the tracks of much more energetic particles. These factors rapidly made the bubble chamber the predominant particle detector for a number of decades, so that cloud chambers were effectively superseded in fundamental research by the start of the 1960s.

The newer spark chamber is an electrical device that uses a grid of uninsulated electric wires in a chamber, with voltages applied between the wires. Microscopic charged particles cause some ionization of the air along the path of the particle, and this ionization causes sparks to fly between the associated wires. The presence and location of these sparks is then registered electrically, and the information is stored for later analysis, such as by a digital computer.

Similar condensation effects can be observed as Wilson clouds, also called condensation clouds, at large explosions in humid air and other Prandtl–Glauert singularity effects.

Read more about this topic:  Cloud Chamber