Contrasting Terms
A compact manifold means a "manifold" that is compact as a topological space, but possibly has boundary. More precisely, it is a compact manifold with boundary (the boundary may be empty). By contrast, a closed manifold is compact without boundary.
An open manifold is a manifold without boundary with no compact component. For a connected manifold, "open" is equivalent to "without boundary and non-compact", but for a disconnected manifold, open is stronger. For instance, the disjoint union of a circle and the line is non-compact, but is not an open manifold, since one component (the circle) is compact.
The notion of closed manifold is unrelated with that of a closed set. A disk with its boundary is a closed set, but not a closed manifold.
Read more about this topic: Closed Manifold
Famous quotes containing the words contrasting and/or terms:
“Humour is the describing the ludicrous as it is in itself; wit is the exposing it, by comparing or contrasting it with something else. Humour is, as it were, the growth of nature and accident; wit is the product of art and fancy.”
—William Hazlitt (17781830)
“The intimate revelations of young men, or at least the terms in which they express them, are usually plagiaristic and marred by obvious suppressions.”
—F. Scott Fitzgerald (18961940)