Clifford Bundle - Clifford Bundle of A Riemannian Manifold

Clifford Bundle of A Riemannian Manifold

If M is a Riemannian manifold with metric g, then the Clifford bundle of M is the Clifford bundle generated by the tangent bundle TM. One can also build a Clifford bundle out of the cotangent bundle T*M. The metric induces a natural isomorphism TM = T*M and therefore an isomorphism Cℓ(TM) = Cℓ(T*M).

There is a natural vector bundle isomorphism between the Clifford bundle of M and the exterior bundle of M:

This is an isomorphism of vector bundles not algebra bundles. The isomorphism is induced from the corresponding isomorphism on each fiber. In this way one can think of sections of the Clifford bundle as differential forms on M equipped with Clifford multiplication rather than the wedge product (which is independent of the metric).

The above isomorphism respects the grading in the sense that

\begin{align}
C\ell^0(T^*M) &= \Lambda^{\mathrm{even}}(T^*M)\\
C\ell^1(T^*M) &= \Lambda^{\mathrm{odd}}(T^*M).
\end{align}

Read more about this topic:  Clifford Bundle

Famous quotes containing the words clifford, bundle and/or manifold:

    Youth is not a question of years: one is young or old from birth.
    —Natalie Clifford Barney (1876–1972)

    We styled ourselves the Knights of the Umbrella and the Bundle; for, wherever we went ... the umbrella and the bundle went with us; for we wished to be ready to digress at any moment. We made it our home nowhere in particular, but everywhere where our umbrella and bundle were.
    Henry David Thoreau (1817–1862)

    The Lord wrote it all down on the little slate
    Of the baby tortoise.
    Outward and visible indication of the plan within,
    The complex, manifold involvedness of an individual creature
    —D.H. (David Herbert)