Claw-free Graph - Recognition

Recognition

It is straightforward to verify that a given graph with n vertices and m edges is claw-free in time O(n4), by testing each 4-tuple of vertices to determine whether they induce a claw. Somewhat more efficiently, but more complicatedly, one can test whether a graph is claw-free by checking, for each vertex of the graph, that the complement graph of its neighbors does not contain a triangle. A graph contains a triangle if and only if the cube of its adjacency matrix contains a nonzero diagonal element, so finding a triangle may be performed in the same asymptotic time bound as n × n matrix multiplication. Therefore, using the Coppersmith–Winograd algorithm, the total time for this claw-free recognition algorithm would be O(n3.376).

Kloks, Kratsch & Müller (2000) observe that in any claw-free graph, each vertex has at most 2√m neighbors; for otherwise by Turán's theorem the neighbors of the vertex would not have enough remaining edges to form the complement of a triangle-free graph. This observation allows the check of each neighborhood in the fast matrix multiplication based algorithm outlined above to be performed in the same asymptotic time bound as 2√m × 2√m matrix multiplication, or faster for vertices with even lower degrees. The worst case for this algorithm occurs when Ω(√m) vertices have Ω(√m) neighbors each, and the remaining vertices have few neighbors, so its total time is O(m3.376/2) = O(m1.688).

Read more about this topic:  Claw-free Graph

Famous quotes containing the word recognition:

    Justice begins with the recognition of the necessity of sharing. The oldest law is that which regulates it, and this is still the most important law today and, as such, has remained the basic concern of all movements which have at heart the community of human activities and of human existence in general.
    Elias Canetti (b. 1905)

    No democracy can long survive which does not accept as fundamental to its very existence the recognition of the rights of minorities.
    Franklin D. Roosevelt (1882–1945)

    Tragedy, as you know, is always a fait accompli, whereas terror always has to do with anticipation, with man’s recognition of his own negative potential—with his sense of what he is capable of.
    Joseph Brodsky (b. 1940)