Classical Unified Field Theories - Eddington's Affine Geometry

Eddington's Affine Geometry

Sir Arthur Stanley Eddington was a noted astronomer who became an enthusiastic and influential promoter of Einstein's general theory of relativity. He was among the first to propose an extension of the gravitational theory based on the affine connection as the fundamental structure field rather than the metric tensor which was the original focus of general relativity. Affine connection is the basis for parallel transport of vectors from one space-time point to another; Eddington assumed the affine connection to be symmetric in its covariant indices, because it seemed plausible that the result of parallel-transporting one infinitesimal vector along another should produce the same result as transporting the second along the first. (Later workers revisited this assumption.)

Eddington emphasized what he considered to be epistemological considerations; for example, he thought that the cosmological constant version of the general-relativistic field equation expressed the property that the universe was "self-gauging". Since the simplest cosmological model (the De Sitter universe) that solves that equation is a spherically symmetric, stationary, closed universe (exhibiting a cosmological red shift, which is more conventionally interpreted as due to expansion), it seemed to explain the overall form of the universe.

Like many other classical unified field theorists, Eddington considered that in the Einstein field equations for general relativity the stress-energy tensor, which represents matter/energy, was merely provisional, and that in a truly unified theory the source term would automatically arise as some aspect of the free-space field equations. He also shared the hope that an improved fundamental theory would explain why the two elementary particles then known (proton and electron) have quite different masses.

The Dirac equation for the relativistic quantum electron caused Eddington to rethink his previous conviction that fundamental physical theory had to be based on tensors. He subsequently devoted his efforts into development of a "Fundamental Theory" based largely on algebraic notions (which he called "E-frames"). Unfortunately his descriptions of this theory were sketchy and difficult to understand, so very few physicists followed up on his work.

Read more about this topic:  Classical Unified Field Theories

Famous quotes containing the word geometry:

    ... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. It’s not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, I’m able to avoid or manipulate or process pain.
    Louise Bourgeois (b. 1911)