- This is not a Weyl group and has no connection with the Weil-Châtelet group or the Mordell-Weil group
The Weil group of a class formation with fundamental classes uE/F ∈ H2(E/F, AF) is a kind of modified Galois group, introduced by Weil (1951) and used in various formulations of class field theory, and in particular in the Langlands program.
If E/F is a normal layer, then the Weil group U of E/F is the extension
- 1 → AF → U → E/F → 1
corresponding to the fundamental class uE/F in H2(E/F, AF). The Weil group of the whole formation is defined to be the inverse limit of the Weil groups of all the layers G/F, for F an open subgroup of G.
The reciprocity map of the class formation (G, A) induces an isomorphism from AG to the abelianization of the Weil group.
Read more about this topic: Class Formation
Famous quotes containing the words weil and/or group:
“When a contradiction is impossible to resolve except by a lie, then we know that it is really a door.”
—Simone Weil (19091943)
“With a group of bankers I always had the feeling that success was measured by the extent one gave nothing away.”
—Francis Aungier, Pakenham, 7th Earl Longford (b. 1905)