- This is not a Weyl group and has no connection with the Weil-Châtelet group or the Mordell-Weil group
The Weil group of a class formation with fundamental classes uE/F ∈ H2(E/F, AF) is a kind of modified Galois group, introduced by Weil (1951) and used in various formulations of class field theory, and in particular in the Langlands program.
If E/F is a normal layer, then the Weil group U of E/F is the extension
- 1 → AF → U → E/F → 1
corresponding to the fundamental class uE/F in H2(E/F, AF). The Weil group of the whole formation is defined to be the inverse limit of the Weil groups of all the layers G/F, for F an open subgroup of G.
The reciprocity map of the class formation (G, A) induces an isomorphism from AG to the abelianization of the Weil group.
Read more about this topic: Class Formation
Famous quotes containing the words weil and/or group:
“The mysteries of faith are degraded if they are made into an object of affirmation and negation, when in reality they should be an object of contemplation.”
—Simone Weil (19091943)
“Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.”
—Mary Barnett Gilson (1877?)