Chlorine Production - Gas Extraction - Diaphragm Cell Electrolysis (Bipolar)

Diaphragm Cell Electrolysis (Bipolar)

In diaphragm cell electrolysis, an asbestos (or polymer-fiber) diaphragm separates a cathode and an anode, preventing the chlorine forming at the anode from re-mixing with the sodium hydroxide and the hydrogen formed at the cathode. This technology was also developed at the end of the nineteenth century. There are several variants of this process: the Le Sueur cell (1893), the Hargreaves-Bird cell (1901), the Gibbs cell (1908), and the Townsend cell (1904). The cells vary in construction and placement of the diaphragm, with some having the diaphragm in direct contact with the cathode.

The salt solution (brine) is continuously fed to the anode compartment and flows through the diaphragm to the cathode compartment, where the caustic alkali is produced and the brine is partially depleted. As a result, diaphragm methods produce alkali that is quite dilute (about 12%) and of lower purity than do mercury cell methods.

Diaphragm cells are not burdened with the problem of preventing mercury discharge into the environment; they also operate at a lower voltage, resulting in an energy savings over the mercury cell method, but large amounts of steam are required if the caustic has to be evaporated to the commercial concentration of 50%.

Read more about this topic:  Chlorine Production, Gas Extraction

Famous quotes containing the word cell:

    I turn and turn in my cell like a fly that doesn’t know where to die.
    Antonio Gramsci (1891–1937)