Chevron Plot

A chevron plot is a way of representing protein folding kinetic data in the presence of varying concentrations of denaturant that disrupts the protein's native tertiary structure. The plot is known as "chevron" plot because of the canonical v, or chevron shape observed when the logarithm of the observed relaxation rate is plotted as a function of the denaturant concentration.

In a two-state system, folding and unfolding rates dominate the observed relaxation rates below and above the denaturation midpoint (Cm). This gives rise to the terminology of folding and unfolding arms for the limbs of the chevron. A priori information on the Cm of a protein can be obtained from equilibrium experiments. In fitting to a two-state model, the logarithm of the folding and unfolding rates is assumed to depend linearly on the denaturant concentration, thus resulting in the slopes mf and mu, called the folding and unfolding m-values, respectively (also called the kinetic m-values). The sum of the two rates is the observed relaxation rate. An agreement between equilibrium m-value and the absolute sum of the kinetic m-values is typically seen as a signature for two-state behavior. Most of the reported denaturation experiments have been carried out at 298 K with either urea or guanidinium chloride (GuHCl) as denaturants.

Read more about Chevron Plot:  Experimental Methodology, Chevron Roll-overs

Famous quotes containing the word plot:

    James’s great gift, of course, was his ability to tell a plot in shimmering detail with such delicacy of treatment and such fine aloofness—that is, reluctance to engage in any direct grappling with what, in the play or story, had actually “taken place”Mthat his listeners often did not, in the end, know what had, to put it in another way, “gone on.”
    James Thurber (1894–1961)