Chemical Reactor - Overview

Overview

There are a couple main basic vessel types:

  • A tank
  • A pipe or tubular reactor (laminar flow reactor(LFR))

Both types can be used as continuous reactors or batch reactors. Most commonly, reactors are run at steady-state, but can also be operated in a transient state. When a reactor is first brought back into operation (after maintenance or inoperation) it would be considered to be in a transient state, where key process variables change with time. Both types of reactors may also accommodate one or more solids (reagents, catalyst, or inert materials), but the reagents and products are typically liquids and gases.

There are three main basic models used to estimate the most important process variables of different chemical reactors:

  • batch reactor model (batch),
  • continuous stirred-tank reactor model (CSTR), and
  • plug flow reactor model (PFR).

Furthermore, catalytic reactors require separate treatment, whether they are batch, CST, or PF reactors, as the many assumptions of the simpler models are not valid.

Key process variables include

  • Residence time (τ, lower case Greek tau)
  • Volume (V)
  • Temperature (T)
  • Pressure (P)
  • Concentrations of chemical species (C1, C2, C3, ... Cn)
  • Heat transfer coefficients (h, U)

A chemical reactor, typically tubular reactor, could be a packed bed. The packing inside the bed may have catalyst to catalyze the chemical reaction. A chemical reactor may also be a fluidized bed; see Fluidized bed reactor.

Chemical reactions occurring in a reactor may be exothermic, meaning giving off heat, or endothermic, meaning absorbing heat. A chemical reactor vessel may have a cooling or heating jacket or cooling or heating coils (tubes) wrapped around the outside of its vessel wall to cool down or heat up the contents.

Read more about this topic:  Chemical Reactor