Mid-infrared Chemical Imaging
Mid-infrared (MIR) spectroscopy probes fundamental molecular vibrations, which arise in the spectral range 2,500-25,000 nm. Commercial imaging implementations in the MIR region employ hyperspectral imagers or Fourier Transform Infrared (FT-IR) interferometers, depending on the application. The MIR absorption bands tend to be relatively narrow and well-resolved; direct spectral interpretation is often possible by an experienced spectroscopist. MIR spectroscopy can distinguish subtle changes in chemistry and structure, and is often used for the identification of unknown materials. The absorptions in this spectral range are relatively strong; for this reason, sample presentation is important to limit the amount of material interacting with the incoming radiation in the MIR region. Data can be collected in reflectance, transmission, or emission mode. Water is a very strong absorber of MIR radiation and wet samples often require advanced sampling procedures (such as attenuated total reflectance). Commercial instruments include point and line mapping, and imaging.
For types of MIR microscope, see Microscopy#Infrared microscopy.
Atmospheric windows in the infrared spectrum are also employed to perform chemical imaging remotely. In these spectral regions the atmospheric gases (mainly water and CO2) present low absorption and allow infrared viewing over kilometer distances. Target molecules can then be viewed using the selective absorption/emission processes described above. An example of the chemical imaging of a simultaneous release of SF6 and NH3 is shown in the image.
Read more about this topic: Chemical Imaging, Principles, Types of Vibrational Chemical Imaging Instruments
Famous quotes containing the word chemical:
“We do not want actions, but men; not a chemical drop of water, but rain; the spirit that sheds and showers actions, countless, endless actions.”
—Ralph Waldo Emerson (18031882)