Case of Rings
If R and S are rings and there exists a ring homomorphism R → S, then the characteristic of S divides the characteristic of R. This can sometimes be used to exclude the possibility of certain ring homomorphisms. The only ring with characteristic 1 is the trivial ring which has only a single element 0 = 1. If a non-trivial ring R does not have any zero divisors, then its characteristic is either 0 or prime. In particular, this applies to all fields, to all integral domains, and to all division rings. Any ring of characteristic 0 is infinite.
The ring Z/nZ of integers modulo n has characteristic n. If R is a subring of S, then R and S have the same characteristic. For instance, if q(X) is a prime polynomial with coefficients in the field Z/pZ where p is prime, then the factor ring (Z/pZ)/(q(X)) is a field of characteristic p. Since the complex numbers contain the rationals, their characteristic is 0.
If a commutative ring R has prime characteristic p, then we have (x + y)p = xp + yp for all elements x and y in R – the "freshman's dream" holds for power p.
The map
- f(x) = xp
then defines a ring homomorphism
- R → R.
It is called the Frobenius homomorphism. If R is an integral domain it is injective.
Read more about this topic: Characteristic (algebra)
Famous quotes containing the words case of, case and/or rings:
“When a cat cries over a rat, its a case of false compassion.”
—Chinese proverb.
“One thing in any case is certain: man is neither the oldest nor the most constant problem that has been posed for human knowledge.”
—Michel Foucault (19261984)
“She has got rings on every finger,
Round one of them she have got three.
She have gold enough around her middle
To buy Northumberland that belongs to thee.”
—Unknown. Young Beichan (l. 6164)