The Matrix of A Linear Transformation
Now suppose T : V → W is a linear transformation, {α1, ..., αn} is a basis for V and {β1, ..., βm} is a basis for W. Let φ and ψ be the coordinate isomorphisms for V and W, respectively, relative to the given bases. Then the map T1 = ψ-1 o T o φ is a linear transformation from Rn to Rm, and therefore has a matrix t; its j-th column is ψ-1(T(αj)) for j = 1, ..., n. This matrix is called the matrix of T with respect to the ordered bases {α1, ..., αn} and {β1, ..., βm}. If η = T(ξ) and y and x are the coordinate tuples of η and ξ, then y = ψ-1(T(φ(x))) = tx. Conversely, if ξ is in V and x = φ-1(ξ) is the coordinate tuple of ξ with respect to {α1, ..., αn}, and we set y = tx and η = ψ(y), then η = ψ(T1(x)) = T(ξ). That is, if ξ is in V and η is in W and x and y are their coordinate tuples, then y = tx if and only if η = T(ξ).
Theorem Suppose U, V and W are vector spaces of finite dimension and an ordered basis is chosen for each. If T : U → V and S : V → W are linear transformations with matrices s and t, then the matrix of the linear transformation S o T : U → W (with respect to the given bases) is st.
Read more about this topic: Change Of Basis
Famous quotes containing the word matrix:
“The matrix is God?
In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this beings omniscience and omnipotence are assumed to be limited to the matrix.
If it has limits, it isnt omnipotent.
Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
—William Gibson (b. 1948)