Chandrasekhar Limit - Super-Chandrasekhar Mass Supernovae

Super-Chandrasekhar Mass Supernovae

In April 2003, the Supernova Legacy Survey observed a type Ia supernova, designated SNLS-03D3bb, in a galaxy approximately 4 billion light years away. According to a group of astronomers at the University of Toronto and elsewhere, the observations of this supernova are best explained by assuming that it arose from a white dwarf which grew to twice the mass of the Sun before exploding. They believe that the star, dubbed the "Champagne Supernova" by University of Oklahoma astronomer David R. Branch, may have been spinning so fast that centrifugal force allowed it to exceed the limit. Alternatively, the supernova may have resulted from the merger of two white dwarfs, so that the limit was only violated momentarily. Nevertheless, they point out that this observation poses a challenge to the use of type Ia supernovae as standard candles.

Since the observation of the Champagne Supernova in 2003, more very bright type Ia supernovae are thought to have originated by white dwarfs whose masses exceeded the Chandrasekhar limit. These include SN 2006gz, SN 2007if and SN 2009dc. The super-Chandrasekhar mass white dwarfs that have originated these supernovae are believed to have had masses up to 2.4-2.8 solar masses. One way to potentially explain the problem of the Champagne Supernova was considering it the result of an aspherical explosion of a white dwarf. However, spectropolarimetric observations of SN 2009dc showed it had a polarization smaller than 0.3, making the large asphericity theory unlikely.

Read more about this topic:  Chandrasekhar Limit

Famous quotes containing the word mass:

    Genius is present in every age, but the men carrying it within them remain benumbed unless extraordinary events occur to heat up and melt the mass so that it flows forth.
    Denis Diderot (1713–1784)