Matrix Map
Among n×n square matrices over the reals, with I the identity matrix, let A be any skew-symmetric matrix (so that AT = −A). Then I + A is invertible, and the Cayley transform
produces an orthogonal matrix, Q (so that QTQ = I). The matrix multiplication in the definition of Q above is commutative, so Q can be alternatively defined as . In fact, Q must have determinant +1, so is special orthogonal. Conversely, let Q be any orthogonal matrix which does not have −1 as an eigenvalue; then
is a skew-symmetric matrix. The condition on Q automatically excludes matrices with determinant −1, but also excludes certain special orthogonal matrices. Some authors use a superscript "c" to denote this transform, writing Q = Ac and A = Qc.
This version of the Cayley transform is its own functional inverse, so that A = (Ac)c and Q = (Qc)c. A slightly different form is also seen (Golub & Van Loan 1996), requiring different mappings in each direction (and dropping the superscript notation):
The mappings may also be written with the order of the factors reversed (Courant & Hilbert 1989, Ch.VII, §7.2); however, A always commutes with (μI ± A)−1, so the reordering does not affect the definition.
Read more about this topic: Cayley Transform
Famous quotes containing the words matrix and/or map:
“As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.”
—Margaret Atwood (b. 1939)
“A map of the world that does not include Utopia is not worth even glancing at, for it leaves out the one country at which Humanity is always landing.”
—Oscar Wilde (18541900)