Causal Sets - Definition

Definition

A causal set (or causet) is a set with a partial order relation that is

  • Reflexive: For all, we have .
  • Antisymmetric: For all, we have .
  • Transitive: For all, we have implies .
  • Locally finite: For all, we have card.

Here card denotes the cardinality of a set . We'll write if and .

The set represents the set of spacetime events and the order relation represents the causal relationship between events (see causal structure for the analogous idea in a Lorentzian manifold).

Although this definition uses the reflexive convention we could have chosen the irreflexive convention in which the order relation is irreflexive. The causal relation of a Lorentzian manifold (without closed causal curves) satisfies the first three conditions. It is the local finiteness condition that introduces spacetime discreteness.

Read more about this topic:  Causal Sets

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)