In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result denied in real analysis.
Read more about Cauchy's Integral Formula: Theorem, Proof Sketch, Example, Consequences
Famous quotes containing the words integral and/or formula:
“An island always pleases my imagination, even the smallest, as a small continent and integral portion of the globe. I have a fancy for building my hut on one. Even a bare, grassy isle, which I can see entirely over at a glance, has some undefined and mysterious charm for me.”
—Henry David Thoreau (18171862)
“So, if we must give a general formula applicable to all kinds of soul, we must describe it as the first actuality [entelechy] of a natural organized body.”
—Aristotle (384323 B.C.)