Examples
- Any uniform space (hence any metric space, topological vector space, or topological group) is a Cauchy space; see Cauchy filter for definitions.
- A lattice ordered group carries a natural Cauchy structure.
- Any directed set A may be made into a Cauchy space by declaring a filter F to be Cauchy if, given any element n of A, there is an element U of F such that U is either a singleton or a subset of the tail {m | m ≥ n}. Then given any other Cauchy space X, the Cauchy-continuous functions from A to X are the same as the Cauchy nets in X indexed by A. If X is complete, then such a function may be extended to the completion of A, which may be written A ∪ {∞}; the value of the extension at ∞ will be the limit of the net. In the case where A is the set {1, 2, 3, …} of natural numbers (so that a Cauchy net indexed by A is the same as a Cauchy sequence), then A receives the same Cauchy structure as the metric space {1, 1/2, 1/3, …}.
Read more about this topic: Cauchy Space
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)