Cauchy Product - Relation To Convolution of Functions

Relation To Convolution of Functions

One can also define the Cauchy product of doubly infinite sequences, thought of as functions on . In this case the Cauchy product is not always defined: for instance, the Cauchy product of the constant sequence 1 with itself, is not defined. This doesn't arise for singly infinite sequences, as these have only finite sums.

One has some pairings, for instance the product of a finite sequence with any sequence, and the product . This is related to duality of Lp spaces.

Read more about this topic:  Cauchy Product

Famous quotes containing the words relation to, relation and/or functions:

    ... a worker was seldom so much annoyed by what he got as by what he got in relation to his fellow workers.
    Mary Barnett Gilson (1877–?)

    You know there are no secrets in America. It’s quite different in England, where people think of a secret as a shared relation between two people.
    —W.H. (Wystan Hugh)

    The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.
    Cyril Connolly (1903–1974)