Definition
- The Cauchy index was first defined for a pole s of the rational function r by Augustin Louis Cauchy in 1837 using one-sided limits as:
- A generalization over the compact interval is direct (when neither a nor b are poles of r(x)): it is the sum of the Cauchy indices of r for each s located in the interval. We usually denote it by .
- We can then generalize to intervals of type since the number of poles of r is a finite number (by taking the limit of the Cauchy index over for a and b going to infinity).
Read more about this topic: Cauchy Index
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)