Definition
- The Cauchy index was first defined for a pole s of the rational function r by Augustin Louis Cauchy in 1837 using one-sided limits as:
- A generalization over the compact interval is direct (when neither a nor b are poles of r(x)): it is the sum of the Cauchy indices of r for each s located in the interval. We usually denote it by .
- We can then generalize to intervals of type since the number of poles of r is a finite number (by taking the limit of the Cauchy index over for a and b going to infinity).
Read more about this topic: Cauchy Index
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)