Mathematical Definition
Formally, a material is said to be Cauchy-elastic if the Cauchy stress tensor is a function of the strain tensor (deformation gradient) alone:
This definition assumes that the effect of temperature can be ignored, and the body is homogeneous. This is the constitutive equation for a Cauchy-elastic material.
Note that the function depends on the choice of reference configuration. Typically, the reference configuration is taken as the relaxed (zero-stress) configuration, but need not be.
Frame indifference requires that the constitutive relation should not change when the location of the observer changes. Therefore the constitutive equation for another arbitrary observer can be written . Knowing that the Cauchy stress tensor and the deformation gradient are objective quantities, one can write:
where is a proper orthogonal tensor.
The above is a condition that the constitutive law has to respect to make sure that the response of the material will be independent of the observer. Similar conditions can be derived for constitutive laws relating the deformation gradient to the first or second Piola-Kirchhoff stress tensor.
Read more about this topic: Cauchy Elastic Material
Famous quotes containing the words mathematical and/or definition:
“It is by a mathematical point only that we are wise, as the sailor or the fugitive slave keeps the polestar in his eye; but that is sufficient guidance for all our life. We may not arrive at our port within a calculable period, but we would preserve the true course.”
—Henry David Thoreau (18171862)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)