Definition
Let X and Y be metric spaces, and let f be a function from X to Y. Then f is Cauchy-continuous if and only if, given any Cauchy sequence (x1, x2, …) in X, the sequence (f(x1), f(x2), …) is a Cauchy sequence in Y.
Read more about this topic: Cauchy-continuous Function
Famous quotes containing the word definition:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)