CAT(k) Space - Hadamard Spaces

Hadamard Spaces

As a special case, a complete CAT(0) space is also known as a Hadamard space; this is by analogy with the situation for Hadamard manifolds. A Hadamard space is contractible (it has the homotopy type of a single point) and, between any two points of a Hadamard space, there is a unique geodesic segment connecting them (in fact, both properties also hold for general, possibly incomplete, CAT(0) spaces). Most importantly, distance functions in Hadamard spaces are convex: if σ1, σ2 are two geodesics in X defined on the same interval of time I, then the function IR given by

is convex in t.

Read more about this topic:  CAT(k) Space

Famous quotes containing the word spaces:

    through the spaces of the dark
    Midnight shakes the memory
    As a madman shakes a dead geranium.
    —T.S. (Thomas Stearns)