Catalytically Perfect Enzyme

A catalytically perfect enzyme or kinetically perfect enzyme is an enzyme that catalyzes so efficiently, that almost every time enzyme meets its substrate, the reaction occurs. The specificity constant, kcat/Km, of such enzymes is on the order of 108 to 109 M-1 s-1, indicating high efficiency. Catalytically perfect reactions are only limited by substrate diffusion rate.

Some catalytically perfect enzymes are triose-phosphate isomerase, carbonic anhydrase, acetylcholinesterase, catalase, fumarase, β-lactamase, and superoxide dismutase.

Some enzymes operate with kinetics which are faster than diffusion rates, which would seem to be impossible. Several mechanisms have been invoked to explain this phenomenon. Some proteins are believed to accelerate catalysis by drawing their substrate in and preorienting them by using dipolar electric fields. Some invoke a quantum-mechanical tunneling explanation whereby a proton or an electron can tunnel through activation barriers, although proton tunneling remains a somewhat controversial idea.

Famous quotes containing the word perfect:

    The most perfect political community must be amongst those who are in the middle rank, and those states are best instituted wherein these are a larger and more respectable part, if possible, than both the other; or, if that cannot be, at least than either of them separate, so that being thrown into the balance it may prevent either scale from preponderating.
    Aristotle (384–322 B.C.)