Casting Out Nines - A Variation On The Explanation

A Variation On The Explanation

A nice trick for very young children to learn to add nine is to add ten to the digit and to count back one. Since we are adding 1 to the ten's digit and subtracting one from the unit's digit, the sum of the digits should remain the same. For example 9+2=11 with 1+1=2. When adding 9 to itself, we would thus expect the sum of the digits to be 9 as follows: 9+9=18 (1+8=9) and 9+9+9=27 (2+7=9). Let us look at a simple multiplication: 5×7=35 (3+5=8). Now consider (7+9)×5=16×5=80 (8+0=8) or 7×(9+5)=7×14=98 (9+8=17 1+7=8).

Any positive integer can be written as 9 × n + a where 'a' is a single digit 0 to 8 and 'n' is any positive integer. Thus, using the distributive rule (9 × n + a)×(9 × m + b)= 9 × 9 × n × m + 9 ×(am+bn) +ab. Since the first two factors are multiplied by 9, their sums will end up being 9 or 0, leaving us with 'ab'. In our example, 'a' was 7 and 'b' was 5. We would expect in any base system the number before that base would behave just like the nine.

Read more about this topic:  Casting Out Nines

Famous quotes containing the word explanation:

    What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesn’t mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.
    Laurence Steinberg (20th century)