Equational Theory
In every cartesian closed category (using exponential notation), (XY)Z and (XZ)Y are isomorphic for all objects X, Y and Z. We write this as the "equation"
- (xy)z = (xz)y.
One may ask what other such equations are valid in all cartesian closed categories. It turns out that all of them follow logically from the following axioms:
- x×(y×z) = (x×y)×z
- x×y = y×x
- x×1 = x (here 1 denotes the terminal object of C)
- 1x = 1
- x1 = x
- (x×y)z = xz×yz
- (xy)z = x(y×z)
Bicartesian closed categories extend cartesian closed categories with binary coproducts and an initial object, with products distributing over coproducts. Their equational theory is extended with the following axioms:
- x + y = y + x
- (x + y) + z = x + (y + z)
- x(y + z) = xy + xz
- x(y + z) = xyxz
- 0 + x = x
- x×0 = 0
- x0 = 1
Read more about this topic: Cartesian Closed Category
Famous quotes containing the word theory:
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of govt as beyond its control, of itself as wholly controlled by govt. Somewhere in between and in gradations is the group that has the sense that govt exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (19051975)