Cartan's Equivalence Method

In mathematics, Cartan's equivalence method is a technique in differential geometry for determining whether two geometrical structures are the same up to a diffeomorphism. For example, if M and N are two Riemannian manifolds with metrics g and h, respectively, when is there a diffeomorphism

such that

?

Although the answer to this particular question was known in dimension 2 to Gauss and in higher dimensions to Christoffel and perhaps Riemann as well, Élie Cartan and his intellectual heirs developed a technique for answering similar questions for radically different geometric structures. (For example see the Cartan-Karlhede algorithm.)

Cartan successfully applied his equivalence method to many such structures, including projective structures, CR structures, and complex structures, as well as ostensibly non-geometrical structures such as the equivalence of Lagrangians and ordinary differential equations. (His techniques were later developed more fully by many others, such as D. C. Spencer and Shiing-Shen Chern.)

The equivalence method is an essentially algorithmic procedure for determining when two geometric structures are identical. For Cartan, the primary geometrical information was expressed in a coframe or collection of coframes on a differentiable manifold. See method of moving frames.

Read more about Cartan's Equivalence Method:  Overview of Cartan's Method

Famous quotes containing the word method:

    “English! they are barbarians; they don’t believe in the great God.” I told him, “Excuse me, Sir. We do believe in God, and in Jesus Christ too.” “Um,” says he, “and in the Pope?” “No.” “And why?” This was a puzzling question in these circumstances.... I thought I would try a method of my own, and very gravely replied, “Because we are too far off.” A very new argument against the universal infallibility of the Pope.
    James Boswell (1740–1795)