Example: General Relativity
We can describe geometries in general relativity in terms of a tetrad field instead of the usual metric tensor field. The metric tensor gives the inner product in the tangent space directly:
The tetrad may be seen as a (linear) map from the tangent space to Minkowski space that preserves the inner product. This lets us find the inner product in the tangent space by mapping our two vectors into Minkowski space and taking the usual inner product there:
Here and range over tangent-space coordinates, while and range over Minkowski coordinates. The tetrad field defines a metric tensor field via the pullback .
Read more about this topic: Cartan Formalism (physics)
Famous quotes containing the words general and/or relativity:
“Of what use, however, is a general certainty that an insect will not walk with his head hindmost, when what you need to know is the play of inward stimulus that sends him hither and thither in a network of possible paths?”
—George Eliot [Mary Ann (or Marian)
“By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bĂȘte noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!”
—Albert Einstein (18791955)