Carry-select Adder

In electronics, a carry-select adder is a particular way to implement an adder, which is a logic element that computes the -bit sum of two -bit numbers. The carry-select adder is simple but rather fast, having a gate level depth of .

The carry-select adder generally consists of two ripple carry adders and a multiplexer. Adding two n-bit numbers with a carry-select adder is done with two adders (therefore two ripple carry adders) in order to perform the calculation twice, one time with the assumption of the carry being zero and the other assuming one. After the two results are calculated, the correct sum, as well as the correct carry, is then selected with the multiplexer once the correct carry is known.

The number of bits in each carry select block can be uniform, or variable. In the uniform case, the optimal delay occurs for a block size of . When variable, the block size should have a delay, from addition inputs A and B to the carry out, equal to that of the multiplexer chain leading into it, so that the carry out is calculated just in time. The delay is derived from uniform sizing, where the ideal number of full-adder elements per block is equal to the square root of the number of bits being added, since that will yield an equal number of MUX delays.

Read more about Carry-select Adder:  Basic Building Block, Uniform-sized Adder, Variable-sized Adder, Combining With Other Adder Structures