Carbon Capture and Storage - Capture

Capture

Capturing CO2 is probably most effective at point sources, such as large fossil fuel or biomass energy facilities, industries with major CO2 emissions, natural gas processing, synthetic fuel plants and fossil fuel-based hydrogen production plants. Extraction (recovery) from air is possible, but not very practical. The CO2 concentration drops rapidly moving away from the point source. The lower concentration increases the amount of mass flow that must be processed (per tonne of carbon dioxide extracted). The air also contains oxygen, however, and so capturing and scrubbing the CO2 from the air, and then storing the CO2, could slow down the oxygen cycle in the biosphere.

Concentrated CO2 from the combustion of coal in oxygen is relatively pure, and could be directly processed. However impurities in CO2 streams could have a significant effect on their phase behaviour and could pose a significant threat of increased corrosion of pipeline and well materials. In instances where CO2 impurities exist and especially with air capture, a scrubbing process would be needed.

Organisms that produce ethanol by fermentation generate cool, essentially pure CO2 that can be pumped underground. Fermentation produces slightly less CO2 than ethanol by weight. World ethanol production in 2008 is expected to be about 16 billion US gallons (61,000,000 m3).

Broadly, three different types of technologies for scrubbing exist: post-combustion, pre-combustion, and oxyfuel combustion:

  • In post combustion capture, the CO2 is removed after combustion of the fossil fuel — this is the scheme that would be applied to fossil-fuel burning power plants. Here, carbon dioxide is captured from flue gases at power stations or other large point sources. The technology is well understood and is currently used in other industrial applications, although not at the same scale as might be required in a commercial scale power station.
  • The technology for pre-combustion is widely applied in fertilizer, chemical, gaseous fuel (H2, CH4), and power production. In these cases, the fossil fuel is partially oxidized, for instance in a gasifier. The resulting syngas (CO and H2O) is shifted into CO2 and more H2. The resulting CO2 can be captured from a relatively pure exhaust stream. The H2 can now be used as fuel; the carbon dioxide is removed before combustion takes place. There are several advantages and disadvantages when compared to conventional post combustion carbon dioxide capture. The CO2 is removed after combustion of fossil fuels, but before the flue gas is expanded to atmospheric pressure. This scheme is applied to new fossil fuel burning power plants, or to existing plants where re-powering is an option. The capture before expansion, i.e. from pressurized gas, is standard in almost all industrial CO2 capture processes, at the same scale as will be required for utility power plants.
  • In oxy-fuel combustion the fuel is burned in oxygen instead of air. To limit the resulting flame temperatures to levels common during conventional combustion, cooled flue gas is recirculated and injected into the combustion chamber. The flue gas consists of mainly carbon dioxide and water vapour, the latter of which is condensed through cooling. The result is an almost pure carbon dioxide stream that can be transported to the sequestration site and stored. Power plant processes based on oxyfuel combustion are sometimes referred to as "zero emission" cycles, because the CO2 stored is not a fraction removed from the flue gas stream (as in the cases of pre- and post-combustion capture) but the flue gas stream itself. A certain fraction of the CO2 generated during combustion will inevitably end up in the condensed water. To warrant the label "zero emission" the water would thus have to be treated or disposed of appropriately. The technique is promising, but the initial air separation step demands a lot of energy.

An alternate method under development is chemical looping combustion (CLC). Chemical looping uses a metal oxide as a solid oxygen carrier. Metal oxide particles react with a solid, liquid or gaseous fuel in a fluidized bed combustor, producing solid metal particles and a mixture of carbon dioxide and water vapor. The water vapor is condensed, leaving pure carbon dioxide, which can then be sequestered. The solid metal particles are circulated to another fluidized bed where they react with air, producing heat and regenerating metal oxide particles that are recirculated to the fluidized bed combustor. A variant of chemical looping is calcium looping, which uses the alternating carbonation and then calcination of a calcium oxide based carrier as a means of capturing CO2.

A few engineering proposals have been made for the more difficult task of capturing CO2 directly from the air, but work in this area is still in its infancy. Capture costs are estimated to be higher than from point sources, but may be feasible for dealing with emissions from diffuse sources such as automobiles and aircraft. The theoretically required energy for air capture is only slightly more than for capture from point sources. The additional costs come from the devices that use the natural air flow. Global Research Technologies demonstrated a pre-prototype of air capture technology in 2007.

Removing CO2 from the atmosphere is a form of geoengineering by greenhouse gas remediation. Techniques of this type have received widespread media coverage as they offer the promise of a comprehensive solution to global warming if they can be coupled with effective carbon sequestration technologies.

It is more usual to see such techniques proposed for air capture, than for flue gas treatment. Carbon dioxide capture and storage is more commonly proposed on plants burning coal in oxygen extracted from the air, which means the CO2 is highly concentrated and no scrubbing process is necessary. According to the Wallula Energy Resource Center in Washington state, by gasifying coal, it is possible to capture approximately 65% of carbon dioxide embedded in it and sequester it in a solid form.

Read more about this topic:  Carbon Capture And Storage

Famous quotes containing the word capture:

    To capture robbers, first capture their leader.
    Chinese proverb.

    Not even the visionary or mystical experience ever lasts very long. It is for art to capture that experience, to offer it to, in the case of literature, its readers; to be, for a secular, materialist culture, some sort of replacement for what the love of god offers in the world of faith.
    Salman Rushdie (b. 1947)

    Writing prejudicial, off-putting reviews is a precise exercise in applied black magic. The reviewer can draw free- floating disagreeable associations to a book by implying that the book is completely unimportant without saying exactly why, and carefully avoiding any clear images that could capture the reader’s full attention.
    William Burroughs (b. 1914)