In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.
Capillary surfaces are of interest in mathematics because the problems involved are very nonlinear and have interesting properties, such as discontinuous dependence on boundary data at isolated points. In particular, static capillary surfaces with gravity absent have constant mean curvature, so that a minimal surface is a special case of static capillary surface.
They are also of practical interest for fluid management in space (or other environments free of body forces), where both flow and static configuration are often dominated by capillary effects.
Read more about Capillary Surface: The Stress Balance Equation, Static Interfaces, Boundary Conditions
Famous quotes containing the word surface:
“All the aspects of this desert are beautiful, whether you behold it in fair weather or foul, or when the sun is just breaking out after a storm, and shining on its moist surface in the distance, it is so white, and pure, and level, and each slight inequality and track is so distinctly revealed; and when your eyes slide off this, they fall on the ocean.”
—Henry David Thoreau (18171862)