Capacitor Discharge Ignition - History

History

The history of the capacitor discharge ignition system can be traced back to the 1890s when it is believed that Nikola Tesla was the first to propose such an ignition system. In U.S. patent #609250 first filed February 17, 1897, Tesla writes 'Any suitable moving portion of the apparatus is caused to mechanically control the charging of a condenser and its discharge through a circuit in inductive relation to a secondary circuit leading to the terminals between which the discharge is to occur, so that at the desired intervals the condenser may be discharged through its circuit and induce in the other circuit a current of high potential which produces the desired discharge.'

The patent also describes very generally with a drawing, a mechanical means to accomplish this. In the late 1940s an attempt to make one using mechanical means to trigger the capacitor's discharge was tried in America. It suffered from timing problems and was unreliable. However,it was the Robert Bosch company who were the true pioneers. (Bosch is also responsible for the invention of the Magneto) During World War Two, Bosch had fitted Thyratron (tube type) CD ignitions to some piston engined fighter aircraft. With a CD ignition, an aeroplane engine did not need a warm up period for reliable ignition and so a fighter aircraft could take flight more quickly as a result. This early German system used a rotary dc converter along with fragile tube circuitry, and was not suited to life in a fighter aircraft. Failures occurred within only a few hours. The quest for a reliable electronic means of producing a CD ignition began in earnest during the 1950s. In the mid 1950s, the Engineering Research Institute of the University of Michigan in cooperation with Chrysler Corporation in the United States worked to find a method to produce a viable unit.

They were unsuccessful, but did provide much data on the advantages of such a system, should one be built. Namely; a fast voltage rise time to fire-fouled spark plugs, high energy throughout the RPM range resulting in better starting, more power and economy, and lower emissions. A few engineers, scientists, and hobbyists had built CD ignitions throughout the 1950s, using thyratrons which required a warm-up period, and thyratrons were vulnerable to the effects of vibration as well. In an automotive application, the Thyratron triggered CD ignition would fail in either weeks or months. The unreliability of those early Thyratron CD ignitions, made them unsuitable for mass production. One company at least, Tung-Sol (a manufacturer of vacuum tubes) marketed the Thyratron triggered CD ignition, model Tung-Sol EI-4 in 1962, but it was expensive. Despite the failings of Thyratron (vacuum tube) type CD ignitions, the improved ignition that they gave made them a worthwhile addition for some drivers. For the Wankel powered NSU Spider of 1964, Bosch resurrected its thyratron method for a CD ignition and used this up until at least 1966. It suffered the same reliability problems as the Tung-Sol EI-4.

It was the SCR,Silicon-controlled rectifier (SCR) or thyristor invented in the late 1950s that replaced the troublesome thyratron, and paved the way for a reliable solid-state CD ignition. This was thanks to Bill Gutzwiller and his team at General Electric. The SCR was rugged with an indefinite lifetime, but very prone to unwanted trigger impulses which would turn the SCR 'on'. Unwanted trigger impulses in early attempts at using SCRs for CD ignitions were caused by electrical effects, but mainly 'points bounce'. Points bounce is a feature of a points-triggered system. In the standard system with points, distributor, coil, ignition (Kettering system) points bounce prevents the coil from saturating fully as RPM increases resulting in a weak spark, thus limiting high speed potential. In a CD ignition, at least those early attempts, the points bounce created unwanted trigger pulses to the SCR (thyristor) that resulted in a series of weak, untimed sparks that caused extreme misfiring. There were two possible solutions to the problem. The first would be to develop another means of triggering the discharge of the capacitor to one discharge per power stroke by replacing the points with something else. This could be done magnetically or optically, but that would necessitate more electronics and an expensive distributor. The other option was to keep the points, as they were already in use and reliable, and find a way to overcome the 'points bounce' problem. This was accomplished in April 1962 by a Canadian, RCAF officer F.L. Winterburn working in his basement in Ottawa, Ontario.

The design used an inexpensive method that would only recognize the first opening of the points and ignore subsequent openings when the points bounced.

A company was formed in Ottawa in early 1963 called Hyland Electronics building CD ignitions using the Winterburn design. It provided a 75 milijoule spark at all engine speeds up to 5,000 rpm on an eight cylinder (10,000 rpm on a four-cylinder) and consumed only four amperes at that speed. Dynamometer testing during 1963 and 1964 showed a minimum of 5% increase in horsepower with the system, with 10% the norm. One example, a Ford Falcon, had an increase in horsepower of 17%. Spark plug lifespan was increased to at least 50,000 miles and points lifespan was greatly extended from 8,000 miles to at least 60,000 miles. Points lifespan became a factor of rubbing block (cam follower) wear and the life cycle of the spring with some lasting almost 100,000 miles.

The Hyland unit was tolerant of varied points gaps. The system could be switched back to standard inductive discharge ignition by the swapping of two wires. The Hyland CD ignition was the first commercially produced solid-state CD ignition and retailed for $39.95 Canadian. The patents were applied for by Winterburn on September 23, 1963 (United States patent# 3,564,581). The design was leaked to the United States in the summer of 1963 when Hyland exposed the design to a US company in an effort to expand sales. Afterward, numerous companies started building their own throughout the 1960s and 1970s without licence. Some were direct copies of the Winterburn circuit. In 1971 Bosch bought the European patent rights (German, French, British) from Winterburn as their own CD ignition was based upon the Winterburn design.

Read more about this topic:  Capacitor Discharge Ignition

Famous quotes containing the word history:

    Like their personal lives, women’s history is fragmented, interrupted; a shadow history of human beings whose existence has been shaped by the efforts and the demands of others.
    Elizabeth Janeway (b. 1913)

    Spain is an overflow of sombreness ... a strong and threatening tide of history meets you at the frontier.
    Wyndham Lewis (1882–1957)

    The history of the world is none other than the progress of the consciousness of freedom.
    Georg Wilhelm Friedrich Hegel (1770–1831)