Capacitive Sensing - Circuit Design

Circuit Design

Capacitance is typically measured indirectly, by using it to control the frequency of an oscillator, or to vary the level of coupling (or attenuation) of an AC signal.

The design of a simple capacitance meter is often based on a relaxation oscillator. The capacitance to be sensed forms a portion of the oscillator's RC circuit or LC circuit. Basically the technique works by charging the unknown capacitance with a known current. (The equation of state for a capacitor is i = C dv/dt. This means that the capacitance equals the current divided by the rate of change of voltage across the capacitor.) The capacitance can be calculated by measuring the charging time required to reach the threshold voltage (of the relaxation oscillator), or equivalently, by measuring the oscillator's frequency. Both of these are proportional to the RC (or LC) time constant of the oscillator circuit.

The primary source of error in capacitance measurements is stray capacitance, which if not guarded against, may fluctuate between roughly 10 pF and 10 nF. The stray capacitance can be held relatively constant by shielding the (high impedance) capacitance signal and then connecting the shield to (a low impedance) ground reference. Also, to minimize the unwanted effects of stray capacitance, it is good practice to locate the sensing electronics as near the sensor electrodes as possible.

Another measurement technique is to apply a fixed-frequency AC-voltage signal across a capacitive divider. This consists of two capacitors in series, one of a known value and the other of an unknown value. An output signal is then taken from across one of the capacitors. The value of the unknown capacitor can be found from the ratio of capacitances, which equals the ratio of the output/input signal amplitudes, as could be measured by an AC voltmeter. More accurate instruments may use a capacitance bridge configuration, similar to a wheatstone bridge. The capacitance bridge helps to compensate for any variability that may exist in the applied signal.

Read more about this topic:  Capacitive Sensing

Famous quotes containing the words circuit and/or design:

    We are all hostages, and we are all terrorists. This circuit has replaced that other one of masters and slaves, the dominating and the dominated, the exploiters and the exploited.... It is worse than the one it replaces, but at least it liberates us from liberal nostalgia and the ruses of history.
    Jean Baudrillard (b. 1929)

    Nowadays the host does not admit you to his hearth, but has got the mason to build one for yourself somewhere in his alley, and hospitality is the art of keeping you at the greatest distance. There is as much secrecy about the cooking as if he had a design to poison you.
    Henry David Thoreau (1817–1862)