Cantor Function - Definition

Definition

See figure. Formally, the Cantor function c : → is defined as follows:

  1. Express x in base 3.
  2. If x contains a 1, replace every digit after the first 1 by 0.
  3. Replace all 2s with 1s.
  4. Interpret the result as a binary number. The result is c(x).

For example:

  • 1/4 becomes 0.02020202... base 3; there are no 1s so the next stage is still 0.02020202...; this is rewritten as 0.01010101...; when read in base 2, this is 1/3 so c(1/4) = 1/3.
  • 1/5 becomes 0.01210121... base 3; the digits after the first 1 are replaced by 0s to produce 0.01000000...; this is not rewritten since there are no 2s; when read in base 2, this is 1/4 so c(1/5) = 1/4.
  • 200/243 becomes 0.21102 (or 0.211012222...) base 3; the digits after the first 1 are replaced by 0s to produce 0.21; this is rewritten as 0.11; when read in base 2, this is 3/4 so c(200/243) = 3/4.

Read more about this topic:  Cantor Function

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)