Calvin Cycle - Steps

Steps

In the first stage of the Calvin cycle, a CO2 molecule is incorporated into one of two three-carbon molecules (glyceraldehyde 3-phosphate or G3P), using up two molecules of ATP and two molecules of NADPH, both of which were produced in the light-dependent stage. Three steps are involved.

  1. The enzyme RuBisCO catalyses the carboxylation of ribulose-1,5-bisphosphate, RuBP, a 5-carbon compound, by carbon dioxide (a total of 6 carbons) in a two-step reaction. The product of the first step is enediol-enzyme complex that can capture CO2 or O2. Thus, enediol-enzyme complex is the real carboxylase/oxygenase. The CO2 that is captured by enediol in second step produces a six-carbon intermediate initially that immediately splits in half, forming two molecules of 3-phosphoglycerate, or 3-PGA, a 3-carbon compound (also: 3-phosphoglyceric acid, PGA, 3PGA).
  2. The enzyme phosphoglycerate kinase catalyses the phosphorylation of 3-PGA by ATP (which was produced in the light-dependent stage). 1,3-Bisphosphoglycerate (1,3BPGA, glycerate-1,3-bisphosphate) and ADP are the products. (However, note that two 3-PGAs are produced for every CO2 that enters the cycle, so this step utilizes two ATP per CO2 fixed.)
  3. The enzyme glyceraldehyde 3-phosphate dehydrogenase catalyses the reduction of 1,3BPGA by NADPH (which is another product of the light-dependent stage). Glyceraldehyde 3-phosphate (also G3P, GP, TP, PGAL) is produced, and the NADPH itself was oxidized and becomes NADP+. Again, two NADPH are utilized per CO2 fixed.

The next stage in the Calvin cycle is to regenerate RuBP. Five G3P molecules produce three RuBP molecules, using up three molecules of ATP. Since each CO2 molecule produces two G3P molecules, three CO2 molecules produce six G3P molecules, of which five are used to regenerate RuBP, leaving a net gain of one G3P molecule per three CO2 molecules (as would be expected from the number of carbon atoms involved).

The regeneration stage can be broken down into steps.

  1. Triose phosphate isomerase converts all of the G3P reversibly into dihydroxyacetone phosphate (DHAP), also a 3-carbon molecule.
  2. Aldolase and fructose-1,6-bisphosphatase convert a G3P and a DHAP into fructose 6-phosphate (6C). A phosphate ion is lost into solution.
  3. Then fixation of another CO2 generates two more G3P.
  4. F6P has two carbons removed by transketolase, giving erythrose-4-phosphate. The two carbons on transketolase are added to a G3P, giving the ketose xylulose-5-phosphate (Xu5P).
  5. E4P and a DHAP (formed from one of the G3P from the second CO2 fixation) are converted into sedoheptulose-1,7-bisphosphate (7C) by aldolase enzyme.
  6. Sedoheptulose-1,7-bisphosphatase (one of only three enzymes of the Calvin cycle that are unique to plants) cleaves sedoheptulose-1,7-bisphosphate into sedoheptulose-7-phosphate, releasing an inorganic phosphate ion into solution.
  7. Fixation of a third CO2 generates two more G3P. The ketose S7P has two carbons removed by transketolase, giving ribose-5-phosphate (R5P), and the two carbons remaining on transketolase are transferred to one of the G3P, giving another Xu5P. This leaves one G3P as the product of fixation of 3 CO2, with generation of three pentoses that can be converted to Ru5P.
  8. R5P is converted into ribulose-5-phosphate (Ru5P, RuP) by phosphopentose isomerase. Xu5P is converted into RuP by phosphopentose epimerase.
  9. Finally, phosphoribulokinase (another plant-unique enzyme of the pathway) phosphorylates RuP into RuBP, ribulose-1,5-bisphosphate, completing the Calvin cycle. This requires the input of one ATP.

Thus, of six G3P produced, five are used to make three RuBP (5C) molecules (totaling 15 carbons), with only one G3P available for subsequent conversion to hexose. This requires nine ATP molecules and six NADPH molecules per three CO2 molecules. The equation of the overall Calvin cycle is shown diagrammatically below.

RuBisCO also reacts competitively with O2 instead of CO2 in photorespiration. The rate of photorespiration is higher at high temperatures. Photorespiration turns RuBP into 3-PGA and 2-phosphoglycolate, a 2-carbon molecule that can be converted via glycolate and glyoxalate to glycine. Via the glycine cleavage system and tetrahydrofolate, two glycines are converted into serine +CO2. Serine can be converted back to 3-phosphoglycerate. Thus, only 3 of 4 carbons from two phosphoglycolates can be converted back to 3-PGA. It can be seen that photorespiration has very negative consequences for the plant, because, rather than fixing CO2, this process leads to loss of CO2. C4 carbon fixation evolved to circumvent photorespiration, but can occur only in certain plants native to very warm or tropical climates, for example, corn.

Read more about this topic:  Calvin Cycle

Famous quotes containing the word steps:

    The East is marvellously interesting for tracing our steps back. But for going forward, it is nothing. All it can hope for is to be fertilised by Europe, so that it can start on a new phase.
    —D.H. (David Herbert)

    Freedom of religion, freedom of the press, and freedom of person under the protection of habeas corpus, and trial by juries impartially selected. These principles form the bright constellation which has gone before us, and guided our steps through an age of revolution and reformation.
    Thomas Jefferson (1743–1826)

    While glow the heavens with the last steps of day,
    Far, through their rosy depths, dost thou pursue
    Thy solitary way!
    William Cullen Bryant (1794–1878)