Burj Khalifa - Construction

Construction

The tower was constructed by South Korean company, Samsung Engineering & Construction, which also did work on the Petronas Twin Towers and Taipei 101. Samsung Engineering & Construction built the tower in a joint venture with Besix from Belgium and Arabtec from UAE. Turner is the Project Manager on the main construction contract.

Under UAE law, the Contractor and the Engineer of Record, Hyder Consulting, is jointly and severally liable for the performance of Burj Khalifa.

The primary structure is reinforced concrete. Putzmeister created a new, super high-pressure trailer concrete pump, the BSA 14000 SHP-D, for this project. Over 45,000 m3 (58,900 cu yd) of concrete, weighing more than 110,000 tonnes (120,000 short tons; 110,000 long tons) were used to construct the concrete and steel foundation, which features 192 piles; each pile is 1.5 metre diameter x 43 m long, buried more than 50 m (164 ft) deep. Burj Khalifa's construction used 330,000 m3 (431,600 cu yd) of concrete and 55,000 tonnes (61,000 short tons; 54,000 long tons) of steel rebar, and construction took 22 million man-hours. A high density, low permeability concrete was used in the foundations of Burj Khalifa. A cathodic protection system under the mat is used to minimize any detrimental effects from corrosive chemicals in local ground water. In May 2008 Putzmeister pumped concrete to a then world record delivery height of 606 m (1,988 ft), the 156th floor. Three tower cranes were used during construction of the uppermost levels, each capable of lifting a 25-tonne load. The remaining structure above is constructed of lighter steel.

Burj Khalifa is highly compartmentalised. Pressurized, air-conditioned refuge floors are located approximately every 35 floors where people can shelter on their long walk down to safety in case of an emergency or fire.

Special mixes of concrete are made to withstand the extreme pressures of the massive building weight; as is typical with reinforced concrete construction, each batch of concrete used was tested to ensure it could withstand certain pressures. CTLGroup, working for SOM, conducted the creep and shrinkage testing critical for the structural analysis of the building.

The consistency of the concrete used in the project was essential. It was difficult to create a concrete that could withstand both the thousands of tonnes bearing down on it and Persian Gulf temperatures that can reach 50 °C (122 °F). To combat this problem, the concrete was not poured during the day. Instead, during the summer months ice was added to the mixture and it was poured at night when the air is cooler and the humidity is higher. A cooler concrete mixture cures evenly throughout and is therefore less likely to set too quickly and crack. Any significant cracks could have put the entire project in jeopardy.

The unique design and engineering challenges of building Burj Khalifa have been featured in a number of television documentaries, including the Big, Bigger, Biggest series on the National Geographic and Five channels, and the Mega Builders series on the Discovery Channel.

Read more about this topic:  Burj Khalifa

Famous quotes containing the word construction:

    No construction stiff working overtime takes more stress and straining than we did just to stay high.
    Gus Van Sant, U.S. screenwriter and director, and Dan Yost. Bob Hughes (Matt Dillon)

    No real “vital” character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the author’s personality, developing by internal necessity as much as by external addition.
    —T.S. (Thomas Stearns)

    There is, I think, no point in the philosophy of progressive education which is sounder than its emphasis upon the importance of the participation of the learner in the formation of the purposes which direct his activities in the learning process, just as there is no defect in traditional education greater than its failure to secure the active cooperation of the pupil in construction of the purposes involved in his studying.
    John Dewey (1859–1952)