Bundle Adjustment - Mathematical Definition

Mathematical Definition

Bundle adjustment amounts to jointly refining a set of initial camera and structure parameter estimates for finding the set of parameters that most accurately predict the locations of the observed points in the set of available images. More formally, assume that 3D points are seen in views and let be the projection of the th point on image . Let denote the binary variables that equal 1 if point is visible in image and 0 otherwise. Assume also that each camera is parameterized by a vector and each 3D point by a vector . Bundle adjustment minimizes the total reprojection error with respect to all 3D point and camera parameters, specifically


\min_{\mathbf{a}_j, \, \mathbf{b}_i} \displaystyle\sum_{i=1}^{n} \; \displaystyle\sum_{j=1}^{m} \; v_{ij} \, d(\mathbf{Q}(\mathbf{a}_j, \, \mathbf{b}_i), \; \mathbf{x}_{ij})^2,

where is the predicted projection of point on image and denotes the Euclidean distance between the image points represented by vectors and . Clearly, bundle adjustment is by definition tolerant to missing image projections and minimizes a physically meaningful criterion.

Read more about this topic:  Bundle Adjustment

Famous quotes containing the words mathematical and/or definition:

    What he loved so much in the plant morphological structure of the tree was that given a fixed mathematical basis, the final evolution was so incalculable.
    —D.H. (David Herbert)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)