Bubble Chamber - Function and Use

Function and Use

The bubble chamber is similar to a cloud chamber in application and basic principle. It is normally made by filling a large cylinder with a liquid heated to just below its boiling point. As particles enter the chamber, a piston suddenly decreases its pressure, and the liquid enters into a superheated, metastable phase. Charged particles create an ionisation track, around which the liquid vaporises, forming microscopic bubbles. Bubble density around a track is proportional to a particle's energy loss.

Bubbles grow in size as the chamber expands, until they are large enough to be seen or photographed. Several cameras are mounted around it, allowing a three-dimensional image of an event to be captured. Bubble chambers with resolutions down to a few μm have been operated.

The entire chamber is subject to a constant magnetic field, which causes charged particles to travel in helical paths whose radius is determined by their charge-to-mass ratios and their velocities. Since the magnitude of the charge of all known charged, long-lived subatomic particles is the same as that of an electron, their radius of curvature must be proportional to their momentum. Thus, by measuring their radius of curvature, their momentum can be determined.

Notable discoveries made by bubble chamber include the discovery of weak neutral currents at Gargamelle in 1973, which establish the soundness of the electroweak theory and paved the way to the discovery of the W and Z bosons in 1983 (at the UA1 and UA2 experiments). Recently, bubble chambers have been used in research on WIMPs, at COUPP and PICASSO.

Read more about this topic:  Bubble Chamber

Famous quotes containing the word function:

    To make us feel small in the right way is a function of art; men can only make us feel small in the wrong way.
    —E.M. (Edward Morgan)