Brownian Motion - Einstein's Theory

Einstein's Theory

There are two parts to Einstein's theory: the first part consists in the formulation of a diffusion equation for Brownian particles, in which the diffusion coefficient is related to the mean squared displacement of a Brownian particle, while the second part consists in relating the diffusion coefficient to measurable physical quantities. In this way Einstein was able to determine the size of atoms, and how many atoms there are in a mole, or the molecular weight in grams, of a gas. In accordance to Avogadro's law this volume is the same for all ideal gases, which is 22.414 liters at standard temperature and pressure. The number of atoms contained in this volume is referred to as Avogadro's number, and the determination of this number is tantamount to the knowledge of the mass of an atom since the latter is obtained by dividing the mass of a mole of the gas by Avogadro's number.

The first part of Einstein's argument was to determine how far a Brownian particle travels in a given time interval. Classical mechanics is unable to determine this distance because of the enormous number of bombardments a Brownian particle will undergo, roughly of the order of 1021 collisions per second. Thus Einstein was led to consider the collective motion of Brownian particles. He showed that if ρ(x,t) is the density of Brownian particles at point x at time t, then ρ satisfies the diffusion equation:

where:

D is the mass diffusivity.

Assuming that all the particles start from the origin at the initial time t=0, the diffusion equation has the solution

This expression allowed Einstein to calculate the moments directly. The first moment is seen to vanish, meaning that the Brownian particle is equally likely to move to the left as it is to move to the right. The second moment is, however, non-vanishing, being given by

This expresses the mean squared displacement in terms of the time elapsed and the diffusivity. From this expression Einstein argued that the displacement of a Brownian particle is not proportional to the elapsed time, but rather to its square root. His argument is based on a conceptual switch from the "ensemble" of Brownian particles to the "single" Brownian particle: we can speak of the relative number of particles at a single instant just as well as of the time it takes a Brownian particle to reach a given point.

The second part of Einstein's theory relates the diffusion constant to physically measurable quantities, such as the mean squared displacement of a particle in a given time interval. This result enables the experimental determination of Avogadro's number and therefore the size of molecules. Einstein analyzed a dynamic equilibrium being established between opposing forces. The beauty of his argument is that the final result does not depend upon which forces are involved in setting up the dynamic equilibrium. In his original treatment, Einstein considered an osmotic pressure experiment, but the same conclusion can be reached in other ways. Consider, for instance, particles suspended in a viscous fluid in a gravitational field. Gravity tends to make the particles settle, whereas diffusion acts to homogenize them, driving them into regions of smaller concentration. Under the action of gravity, a particle acquires a downward speed of, where is the mass of the particle, is the acceleration due to gravity, and is the particle's mobility in the fluid. George Stokes had shown that the mobility for a spherical particle with radius is, where is the dynamic viscosity of the fluid. In a state of dynamic equilibrium, the particles are distributed according to the barometric distribution

where is the difference in density of particles separated by a height difference of, is Boltzmann's constant (namely, the ratio of the universal gas constant, to Avogadro's number, ), and is the absolute temperature. It is Avogadro's number that is to be determined.

Dynamic equilibrium is established because the more that particles are pulled down by gravity, the greater is the tendency for the particles to migrate to regions of lower concentration. The flux is given by Fick's law,

where . Introducing the formula for, we find that

In a state of dynamical equilibrium, this speed must also be equal to . Notice that both expressions for are proportional to, reflecting how the derivation is independent of the type of forces considered. Equating these two expressions yields a formula for the diffusivity:

Here the first equality follows from the first part of Einstein's theory, the third equality follows from the definition of Boltzmann's constant as, and the fourth equality follows from Stokes' formula for the mobility. By measuring the mean squared displacement over a time interval along with the universal gas constant, the temperature, the viscosity, and the particle radius, Avogadro's number can be determined.

The type of dynamical equilibrium proposed by Einstein was not new. It had been pointed out previously by J. J. Thomson in his series of lectures at Yale University in May 1903 that the dynamic equilibrium between the velocity generated by a concentration gradient given by Fick's law and the velocity due to the variation of the partial pressure caused when ions are set in motion "gives us a method of determining Avogadro's Constant which is independent of any hypothesis as to the shape or size of molecules, or of the way in which they act upon each other".

An identical expression to Einstein's formula for the diffusion coefficient was also found by Walther Nernst in 1888 in which he expressed the diffusion coefficient as the ratio of the osmotic pressure to the ratio of the frictional force and the velocity to which it gives rise. The former was equated to the law of van 't Hoff while the latter was given by Stokes's law. He writes for the diffusion coefficient, where is the osmotic pressure and is the ratio of the frictional force to the molecular viscosity which he assumes is given by Stokes's formula for the viscosity. Introducing the ideal gas law per unit volume for the osmotic pressure, the formula becomes identical to that of Einstein's. The use of Stokes's law in Nernst's case, as well as in Einstein and Smoluchowski, is not strictly applicable since it does not apply to the case where the radius of the sphere is small in comparison with the mean free path.

At first the predictions of Einstein's formula were seemingly refuted by a series of experiments by Svedberg in 1906 and 1907, which gave displacements of the particles as 4 to 6 times the predicted value, and by Henri in 1908 who found displacements 3 times greater than Einstein's formula predicted. But Einstein's predictions were finally confirmed in a series of experiments carried out by Chaudesaigues in 1908 and Perrin in 1909. The confirmation of Einstein's theory constituted empirical progress for the kinetic theory of heat. In essence, Einstein showed that the motion can be predicted directly from the kinetic model of thermal equilibrium. The importance of the theory lay in the fact that it confirmed the kinetic theory's account of the second law of thermodynamics as being an essentially statistical law.

Read more about this topic:  Brownian Motion

Famous quotes containing the words einstein and/or theory:

    As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.
    —Albert Einstein (1879–1955)

    The weakness of the man who, when his theory works out into a flagrant contradiction of the facts, concludes “So much the worse for the facts: let them be altered,” instead of “So much the worse for my theory.”
    George Bernard Shaw (1856–1950)