Brooks' Theorem - Proof

Proof

Lovász (1975) gives a simplified proof of Brooks' theorem. If the graph is not biconnected, its biconnected components may be colored separately and then the colorings combined. If the graph has a vertex v with degree less than Δ, then a greedy coloring algorithm that colors vertices farther from v before closer ones uses at most Δ colors. Therefore, the most difficult case of the proof concerns biconnected Δ-regular graphs with Δ ≥ 3. In this case, Lovász shows that one can find a spanning tree such that two nonadjacent neighbors u and w of the root v are leaves in the tree. A greedy coloring starting from u and w and processing the remaining vertices of the spanning tree in bottom-up order, ending at v, uses at most Δ colors. For, when every vertex other than v is colored, it has an uncolored parent, so its already-colored neighbors cannot use up all the free colors, while at v the two neighbors u and w have equal colors so again a free color remains for v itself.

Read more about this topic:  Brooks' Theorem

Famous quotes containing the word proof:

    O, popular applause! what heart of man
    Is proof against thy sweet, seducing charms?
    William Cowper (1731–1800)

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    A short letter to a distant friend is, in my opinion, an insult like that of a slight bow or cursory salutation—a proof of unwillingness to do much, even where there is a necessity of doing something.
    Samuel Johnson (1709–1784)