Breaking Wave - Physics

Physics

During breaking, a deformation (usually a bulge) forms at the wave crest, either leading side of which is known as the "toe." Parasitic capillary waves are formed, with short wavelengths. Those above the "toe" tend to have much longer wavelengths. This theory is anything but perfect, however, as it's linear. There have been a couple non-linear theories of motion (regarding waves). One put forth uses a perturbation method to expand the description all the way to the third order, and better solutions have been found since then. As for wave deformation, methods much like the boundary integral method and the Boussinesq model have been created.

It has been accounted for, that the high-frequencies detail present in a breaking wave play a part in crest deformation and destabilzation. The same theory expands on this, stating that the valleys of the capillary waves create a source for vorticity. It is said that surface tension (and viscosity) are significant for waves up to 2m in wavelength.

These models are flawed, however, as they can't take into account what happens to the water after the wave breaks. Post-break eddy forms and the turbulence created via the breaking is mostly unresearched. Understandably, it might be difficult to glean predictable results from the ocean.

After the tip of the wave overturns and the jet collapses, it creates a very coherent and defined horizontal vertex. The plunging breakers create secondary eddies down the face of the wave. Small horizontal random eddides that form on the sides of the wave suggest that, perhaps, prior to breaking, the water's velocity is more or less two dimensional. This becomes three dimensional upon breaking.

The main vortex along the front of the wave diffuses rapidly into the interior of the wave after breaking, as the eddies on the surface become more viscous. Advection and molecular diffusion play a part in stretching the vortex and redistributing the vorticity, as well as the formation turbulence cascades. The energy of the large vortices are, by this method, is transferred to much smaller isotropic vortices.

Experiments have been conducted to deduce the evolution of turbulence after break, both in deep water and on a beach.

Read more about this topic:  Breaking Wave

Famous quotes containing the word physics:

    But this invites the occult mind,
    Cancels our physics with a sneer,
    And spatters all we knew of denouement
    Across the expedient and wicked stones.
    Karl Shapiro (b. 1913)

    ... it is as true in morals as in physics that all force is imperishable; therefore the consequences of a human action never cease.
    Tennessee Claflin (1846–1923)

    Although philosophers generally believe in laws and deny causes, explanatory practice in physics is just the reverse.
    Nancy Cartwright (b. 1945)