Equivalence of Boundedness and Continuity
As stated in the introduction, a linear operator L between normed spaces X and Y is bounded if and only if it is a continuous linear operator. The proof is as follows.
- Suppose that L is bounded. Then, for all vectors v and h in X with h nonzero we have
-
- Letting go to zero shows that L is continuous at v. Moreover, since the constant M does not depend on v, this shows that in fact L is uniformly continuous (Even stronger, it is Lipschitz continuous.)
- Conversely, it follows from the continuity at the zero vector that there exists a such that for all vectors h in X with . Thus, for all non-zero in X, one has
-
- This proves that L is bounded.
Read more about this topic: Bounded Operator
Famous quotes containing the word continuity:
“There is never a beginning, there is never an end, to the inexplicable continuity of this web of God, but always circular power returning into itself.”
—Ralph Waldo Emerson (18031882)
Related Subjects
Related Phrases
Related Words