Borane - Bonding in Boranes

Bonding in Boranes

Boranes are electron-deficient and pose a problem for conventional descriptions of covalent bonding that involves shared electron pairs. BH3 is a trigonal planar molecule (D3h molecular symmetry). Diborane has a hydrogen-bridged structure, see the diborane article. The description of the bonding in the larger boranes formulated by William Lipscomb involved:

  • 3-center 2-electron B-H-B hydrogen bridges
  • 3-center 2-electron B-B-B bonds
  • 2-center 2-electron bonds (in B-B, B-H and BH2)

The styx number was introduced to aid in electron counting where s = count of 3-center B-H-B bonds; t = count of 3-center B-B-B bonds; y = count of 2-center B-B bonds and x = count of BH2 groups.
Lipscomb's methodology has largely been superseded by a molecular orbital approach, although it still affords insights. The results of this have been summarised in a simple but powerful rule, PSEPT, often known as Wade's rules, that can be used to predict the cluster type, closo-, nido-, etc. The power of this rule is its ease of use and general applicability to many different cluster types other than boranes. There are continuing efforts by theoretical chemists to improve the treatment of the bonding in boranes — an example is Stone's tensor surface harmonic treatment of cluster bonding. A recent development is four-center two-electron bond.

Read more about this topic:  Borane

Famous quotes containing the word bonding:

    The bottom line on bonding with multiples seems to be that if you see bonding as a static event—a moment in time at which you must have eye contact and skin contact simultaneously with two or more infants—you may indeed be in trouble.
    Pamela Patrick Novotny (20th century)